ARTICIAL INTELLIGENCE:
IMAGE RECOGNITION -
CLASSIFICATION — REGRESSION -
FEATURES EXTRACTION

1. Our Domain

Deep Learning, an effective part of Artificial Intelligence, not only makes it possible to draw serious conclusions from
massive data, but also to make serious developments in science and technology. Among them, there are self-supervised
technical systems, forecast of natural phenomena not allowing direct modeling and field experiments etc. This is can be
done fundamental ability of deep learning to identify significant data properties ina hierarchical, “fractal” manner.
Herewith, the depth of the hierarchy is limited by nothing (except for available computing resources), given an ML model of
arelevant complexity.

Such models are neural networks, that are distributed computing systems analogous to the biological brain in two aspects:

« theabilityto comprehend the information, to learn from data is achieved by both systems through training,
+ theresultof learning s fixed as strength of interconnections (synaptic weights) between neurons (functional elements).

At the same time, neural networks have a more distinct structuredness in comparison with the brain: the neurons are
organized into layers so that fixed interrelations are formed between neurons of adjacent layers only.

Communications mutuality is ensured by two basic learning phases: direct (feed forward) and reverse (back propagation)
[4]. The number of layers largely determines the “hierarchical depth” of the input data properties that the network is able to
resolve

For neurons of adjacent layers, either all their possible pairs can be connected, as in classical (fully connected) layers, or
fewer connections are established, as in convolutional layers. Such layers are characteristic of convolutional networks, one
of whichis the network used in the problem of image analysis described below.

The choice of the layer type is typically determined by the type of a task, as well as a compromise between the accuracy of
the neural network and the amount of computations required.

2. Investigation of Children's Drawings

2.1.Whatisinvestigated

The set of children's pics collected as a result of psychological research and available at http.//pics.psych.stir.ac.uk, is jpeg
files, whose names contain a number of categorical and quantitative information about the pic and its author.
Forexample, the Fig. 1 left drawing is taken from file p3-67w-6.7f.jpeg, which means:

e agecategory-p3,

« age-6years,7 months,
« author-girl,

« whoisdrawn-girl.

Theright picfileis nu-21s-4.5m.jpeg, therefore:

+ agecategory —nursery,
« age-4years, 5months,

+ author-boy (self picture),
« whoisdrawn-boy.

Figure 1. Two pieces of the children's drawings collection

@ mse-mse.com &) info.mstroke@gmail.com

2.2. What makes the problem special and challenging

2.2.1. Uniqueness of drawings

It is known that for a successful image recognition the image should be composed of more or less regular elements, or
features. For example, human faces in all their diversity have easily recognizable details: eyes, noses, etc. Bodies are
typically identified by a head, limbs, etc.

However, this is not the case of the children's pictures. Fig. 1 shows how few common, regular and recognizable features
there are on a casually chosen pair of the collection. This is the situation with almost all the rest of the drawings. They are
unique, reflect the individuality and personal imagination of the kids. To successfully solve the problems of a network
training, it was thus necessary to carefully develop its architecture and training protocol trying a large number of
parameters, options, and optimization possibilities. This is described in more detail in Section 3.

2.2.2. Multiplicity of factors

Section 2.1 revealed 4 types of categories, as well as one numeric parameter. The problem was solved in two independent
versions:

« classification by categories,

« regression prediction of age as a quantitative parameter.

The problem of multifactor classification was solved using the Hot Encoding. Several groups of categories were
aggregated to form a single group in such a way that each category of this group corresponded to a certain unique
combination of theinitial categories. For this, Keras, the Python deep learning framework was used.

It was made it possible to teach the network either on all four groups, or on any or some of them (1-3 groups). In the case of
all four categorical groups, the general class consisted of 186 categories.

Note that all the options (choice of all or part of the categories) gave close accuracies of classification. This is an
interesting point: basically, one could expect that a pic is most accurately identified by the complete set of categories. In
fact, it turned out that each of four categories is self-sufficient and able to classify a drawing (see Table 1).

2.2.3. Small dataset

Only 338 drawings ... In practice, a successful learning requires at least several thousand elements.

One of the ways to solve such a problem is an augmentation of data by stochastic rotations, displacements, horizontal and
vertical flapping of the initial pictures. This way, using the Keras ImageGenerator utility, the set of drawings was increased
upto 17.500 pics. Similarly, we got a validation dataset of 3.500 drawings.

2.2. The Network Structure and Learning Protocol

2.2.1. The network architecture

The key to a successful solution of the problem was building a right network. The developed convolutional neural network
was named DeeperNet (Fig. 2). It is deeper than the well-known LeNet network that has two pairs of the convolutional and
pooling layers and did not give the solution to the probleminvolved.

Initial map Convolutional layer Convolutional layer Max pooling layer Convolutional layer Convolutional layer Max pooling layer Fully connected layer Fully connected layer
(36x54) (32 filters 3x3) (32 filters 3x3) (2x2, dropout 25%) (64 filters 3x3) (64 filters 3x3) (2x2, dropout 25%) (512 neurons, (neurons by

dropout 50%) no. of categories)
. ' C \ o o o
go| > - -~ 43 - > g e

Figure 2. DeeperNet — a Convolutional Neural Network
constructed for the solution of the problem

DeeperNet, instead, hastwo blocks, each consisting of a pair of convolutional layers and one max pool layer. These blocks
are followed by two traditional (fully connected) layers. Another feature of DeeperNet is use of dropout in the max pool
layers to fight overfitting.

The Python — Keras code constructing the network is shown in Appendix A.

@ mse-mse.com &) info.mstroke@gmail.com

Dropout is freezing, i.e., exclusion of a certain part of neurons randomly selected for each epoch (a cycle of work with a
complete set of learning dataset) from the training. If we use an analogy with the biological brain, each new learning cycle is
made with the “working” part of the brain, somewhat different from the previous portion. This makes the brain have slightly
different experience. Thus, an ensemble of learners (within the framework of one model) arises --- just as in well-known
ensembleing methods (bagging, boosting etc.). The solution of our problem confirmed that dropout really effectively
compensates thetendency of convolutional neural networks to get overfit if their topology is rather complicated.

Many researchers note that super-results can be achieved with a reasonable combination of dropout and dropconnect
(when not a part of neurons but a certain part of connections between neurons is isolated). This combination is used in the
tasks we are solving currently.

3.2. Organization of the learning process

3.2.1. 10-fold cross validation

Atraditionally used procedure in which the entire training data set is splitin 10:1 ratio so that 9/10 of the data set is used for
training, and the rest for validation. As a result, 9 folds are created so that each component is used for validation once and
only once. The splitting is repeated many times during the learning process.

There was used the option of weighted cross-validation (stratified cross validation). For that, the Python sklearn package
was used (see Appendix B).

3.2.2. Early stopping

Usually, a machine learning task is something more complicated than bare achieving maximum learning accuracy. As is
well known, starting from a certain level of the learning accuracy reached, the generalization, i.e., the accuracy being
obtained on data that does not belong to the training set, begins to worsen. This is illustrated in Figure 4. Highlighted is the
point where the validation error no more diminishes. Soitis necessary to interrupt the training.

Validation-sample
Meansquare

error |

error

Earlystopping Training-sample error
point

% !

Number of epochs

Figure 3. In the process of learning, generalization gets worse.
Early stopping is thus needed.

In practice stopping occurs after detection of a sequence of epochs with a monotonous raise of the error. The length of this
sequence is controlled by a parameter called tolerance. In our case, it was set equal to 7 (see Appendix A). The learning
process with early stoppingisillustrated in Fig. 4.

Training Loss and Accuracy on Children

e train_loss
e Val_loss
e train_acc
—

val_acc

1.0 -

Loss/Accuracy
o o o
S (<] -

o
[N

o
o

0 20 40 60 80 100
Epoch #

Figure 4. Training and validation:
change of errors and accuracy (portions of correctly guessed categories values).

@ mse-mse.com &) info.mstroke@gmail.com

3.2. Results

So,onthetraining set of 17.500 and the test set of 3.500 drawings, two tasks were solved:
Regression. The prediction of age as a quantitative parameter gave accuracy of 87.05 %.

Classification. As pointed above, making use of one, two, three, or all four factors to classify gave comparable accuracy
(percentage of properly guessed categories), asillustrated
inTable 1.

Note that the reached level of accuracy was kept the same with decrease of the training set (by random sampling) up to 40%
ofthe original its size.

Table 1. Classification accuracy with various sets of categories.

Categories included Accuracy
fage’, ‘who drew’, *who is drawn’, ‘age categorv’ 85.58%
‘who drew’, ‘who is drawn’, ‘age category’ T7.80%
‘who is drawn’, ‘age category’ 83.72%
‘age category’ 88.54%

4. Conclusion. About new tasks

Finally, describe the extension of this task on new presently solved problems.
Inthe described task, involving a small dataset, each drawingis “labeled”,i.e., initially classified.

In the case of data sets with tens of thousands and much more elements, itis obviously not possible to “tag” each element.
Aregular machine learning approachin such casesis unsupervised learning, i.e., self-categorization of the data.

Convolutional Encoder Convolutional Decoder Deconvt Pred

Deconv3

Deconv4

Convs Deconvs < 4

Convé Deconvé
»

{
)
p Max

X /' Max pooling
g pooling

Unpooling
Unpooling

Unpoolin
pootne Unpooling

Unpooling

Figure 5. Convolutional encoder-decoder network.

With regard to the image analysis and convolutional networks, this is implemented, for example, in the form of encoding-
decoding of each individual image using an hourglass-shaped network - like the one shown in Fig. 5. The layer in the
narrowest middle part of the network contains a small amount of abstract information about the image, its most essential
components. They can be interpreted as theimage categories.

Presently we test a similar encoding - decoding network on a large database of images. In addition to other projects, it will

be very interesting to apply this network to the presented children's drawings disregarding their original categories - and to
compare the new solution with that described here.

@ mse-mse.com &) info.mstroke@gmail.com

Appendices
A.Constructing the DeeperNet

This constructs a fairly deep

convolutional network

from keras.models import Sequential

from keras.layers.convolutional import Conv2D

from keras.layers.convolutional import MaxPooling2D
from keras.layers.core import Activation, Dropout
from keras.layers.core import Flatten

from keras.layers.core import Dense

from keras import backend as K

class Deeper:
@staticmethod
def build(width, height, depth, classes_no):
model = Sequential ()

inputShape = (height, width, depth)

if we are using "channels first", update the input shape

if K.image_data_format () == "channels_first":
inputShape = (depth, height, width)

model.add (Conv2D (32, (3, 3), padding='same’,
input_shape=inputShape))

model.add (Activation ('relu’))

model.add (Conv2D (32, (3, 3), padding='same"))

model.add (Activation ('relu’))

model.add (MaxPooling2D (pool_size=(2, 2)))

model.add (Dropout (0.25))

model.add (Conv2D (64, (3, 3), padding='same’))

model.add (Activation ('relu’))

model.add (Conv2D (64, 3, 3))

model.add (Activation ('relu’))

model.add (MaxPooling2D (pool_size=(2, 2)))

model.add (Dropout (0.25))

model.add (Flatten ())

model.add (Dense (512))

model.add (Activation ('relu’))

model.add (Dropout (0.5))

model.add (Dense (classes_no))

model.add (Activation ('softmax’))

return model

B.Configuring the Network Learning Process

from keras import optimizers
from keras.callbacks import EarlyStopping
import extractTargets

from keras.preprocessing.image import ImageDataGenerator

from keras.optimizers import Adam

from sklearn.model_selection import StratifiedKFold
from keras.preprocessing.image import img_to_array
from keras.utils import to_categorical

from sklearn.preprocessing import LabelEncoder
from CNN.Custom import Custom

from CNN.Deeper import Deeper

from imutils import paths

import numpy as np

import random

import cv2

import os

import time

start = time.time()
matplotlib.use("Agg")

initialize number of epochs to train for,
initial learning rate,
and batch size

EPOCHS =25
INIT_LR = 1e-3
BS =128

SAMPLE_PORTION =.05
MAX_PIXEL_INTENSITY = 255.0
WIDTH =36

HEIGHT = int(WIDTH*8/5)

@ mse-mse.com

&) info.mstroke@gmail.com

initialize data and targets

print("[INFO] loading images...")

data =]

targets =[]

cats = ["age", "who drew", "who is drawn’, "age category']

cats = ['who drew", "who is drawn’, "age category']
n_splits=10

grab the image paths and randomly shuffle them
imagePaths = sorted(list(paths.list_images('images")))
random.seed(42)

random.shuffle(imagePaths)

grab the image paths and randomly pick a sample of them

imagePaths = sorted(list(paths.list_images('images")))

imagePaths = np.random.choice(imagePaths, int(len(imagePaths)
* SAMPLE_PORTION), replace=False)

for imagePath in imagePaths:
load the image, pre-process it,
and store it in the data list
image = cv2.imread(imagePath, cv2.IMREAD_GRAYSCALE)
image = cv2.resize (image, (WIDTH, HEIGHT))
image = img_to_array(image)
data.append(image)
extract the class target from the image path
target = extractTargets.extractTargets(
os.path.splitext(os.path.basename(imagePath))[0], cats)
targets.append(target)

scale the raw pixel intensities to the range [0, 1]
data = np.array(data, dtype="float") / MAX_PIXEL_INTENSITY

preparing ourselves for 10-fold stratified cross validation
skf = StratifiedKFold(n_splits)
split = skf.split(data, targets)

encode class values as integers
encoder = LabelEncoder()

encoder fit(targets)

targets = encoder.transform(targets)
initial_targets = targets

targets = to_categorical(targets)

print("[INFO] compiling model...")

model = Deeper.build(width=WIDTH, height=HEIGHT,
depth=1, classes_no=targets.shape[1])

sgd = optimizers.Adam (Ir=0.001, beta_1=0.9,
beta_2=0.999, decay=0.0)

model.compile(loss="categorical_crossentropy", optimizer=sgd,
metrics=["accuracy"])

fold =1
history_loss =]
history_val_loss = [|
history_acc =[]
history_val_acc =]

for train_index, test_index in split:
print("Fold no. " + str(fold))
fold = fold + 1
X_train, X_test = data[train_index], data[test_index]
y_train = targets[train_index]
y_test = targets[test_index]
initial_y_test = initial_targets[test_index]

construct the image generator for data augmentation

aug = ImageDataGenerator()

H = model.fit_generator(aug.flow(X_train,
y_train, batch_size=BS),
validation_data=(X_test, y_test),
steps_per_epoch=len(X_train) // BS,
epochs=EPOCHS, verbose=1,
callbacks=[EarlyStopping(monitor="val_loss",
patience=7, mode="auto")])

@ mse-mse.com

&) info.mstroke@gmail.com

history_loss = history_loss + H.history["loss"]
history_val_loss = history_val_loss + H.history["val_loss"]
history_acc = history_acc + H.history["acc']
history_val_acc = history_val_acc + H.history["val_acc']

serialize model to JSON

model_json = model.to_json()

with open("models/children.json", "w") as json_file:
json_file.write(model_json)

serialize weights to HDF5

model.save_weights("models/children.h5")

print("Saved model to disk")

	Страница 1
	Страница 2
	Страница 3
	Страница 4
	Страница 5
	Страница 6
	Страница 7
	Страница 8

